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Many problems in chemistry, physics and engineering requires the inversion of a Fredholm
integral equation of first order. To find the solution of this problem one has to deal with ill-
posed problem and special techniques have to be used. In this paper two of the most common
methods, the Tikhonov regularization and the singular value decomposition, are compared
when finding the solution of a model integral equation. The regularization parameter in the
Tikhonov regularization and the dimension of the subspaces in the singular value decompo-
sition were chosen using the L curve criterion. The analytical solution of the model integral
equation was taken as a reference to analyze the results. The advantages of each method,
with the presence of errors in the data, is presented and it is argumented the superiority of the
singular value decomposition when dealing with this kind of problem.
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1. Introduction

The Fredholm integral equation of first order [1],

∫ b

a

K(x, y)f (y) dy = g(x), c � x � d, (1)

withK,f and g functions of x and y can represent a large variety of problems in science.
A short list of the occurrence of this equation can be given in the areas of geophysics
[2], electromagnetism in soils [3], thermodynamics [4], inverse scattering [5], etc. Refer-
ences [6,7] give a much more complete list of examples. Equation (1) can be interpreted
as f (y) being an input, K(x, y) being an apparatus, and g(x) an output. For a given
K(x, y) and f (y) calculation of g(x) is a simple problem. On the other hand, calcu-
lation of f (y) from K(x, y) and g(x) is a much more elaborate problem to be solved,
representing a class of problem known as an ill-posed problems. Since equation (1) is
linear in the unknown this ill-posed problem is also known as a linear inverse problem.
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In what follows it will be assumed that a representation of (1), in the form Kf = g, has
been found with f ∈ Rn, g ∈ Rm, and K ∈ Rm×n.

In 1932 Hadamard [8] defined a problem as ill-posed whenever one of three condi-
tions: (a) for every f ∈ Rn there existsa g ∈ Rm such that Kf = g, (b) the solution of the
problem, f, is uniquein Rn, and (c) the dependence of f on g is continuous, is not sat-
isfied. It is clear, therefore, that the nature of an ill-posed problem depends not only on
the transformation under consideration but also on the structure of the subspaces Rn and
R
m. Finding the solution of the Fredholm integral equation of first order is an ill-posed

problem. As will be seen, the condition number of K is very large. Therefore any small
changes in g, such as those from the experimental work, or even the ones when finding
the appropriate representation, will be largely amplified by the K−1. A more intuitive
way to see the ill-posed nature of (1), using f (y) = cos(ny), can be seen in [1].

Among the several methods used to find the solution of an ill-posed problem the
Tikhonov regularization [9,10] and the singular value decomposition (SVD) [11] are the
most often used. In the present work the efficiency of these two numerical methods will
be tested against an analytical solvable Fredholm integral equation of first order [12,13].
In both of these methods there will appear a parameter to be choosen, called the regular-
ization parameter, as will be discussed later. The L curve criterion, used by the first time
in [14], will be the criterion to be used here to decided which regularization parameter
has to be taken. Although this is the criterion that is most widespread, other methods
are available [1]. The L curve approach has been used very often in the literature, for
example, in [3–5]. A critical analysis of the Tikhonov regularization and the singular
value decomposition method, using the L curve analysis, is the main objective of this
paper.

2. The Tikhonov regularization

The problem to find the solution for the inverse linear ill-posed problem, repre-
sented by the Fredholm integral equation of first order, will be discussed here in two
aspects: (i) one by removing the singularity, and (ii) by finding appropriate subspaces in
R
n and Rm such that the inverse operator can be computed.

In the Tikhonov regularization [9,10] the problem to be solved is

min
f
‖Kf− g‖2

2 (2)

subject to the restriction

‖Lf‖2
2 � δ2, (3)

where δ is a small positive number. The operator L is generally given by

Lf = a0

∥∥f− f̂
∥∥2

2 + a1

∥∥∥∥ df
dx

∥∥∥∥2

2

+ a2

∥∥∥∥ d2f
dx2

∥∥∥∥2

2

(4)
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with a0, a1, a2 assuming values equal to 1 or 0, depending on the condition to be im-
possed. The function f̂ is an initial guess for the solution itself

The solution of (2) with the restriction (3) can be transformed into a problem to
find the minimum of the functional

�(f) = ‖Kf− g‖2
2 + λ‖Lf‖2

2, (5)

where λ is a parameter to be determined, called the regularization parameter. This will
give the solution [15](

KTK + λ(a0I+ a1H1 + a2H2)
)
f = KTg+ λ̂f (6)

with I being the identity matrix,

H1 =




1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1


 (7)

and

H2 =




1 −2 1
−2 5 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1



. (8)

The solution (6), therefore, satisfies the restrictions (2) and (3). Clearly, the problem
is not completely solved since the regularization parameter has not been found. This
parameter should properly balance the two contributions, a minimum residual norm,
� = ‖Kf − g‖2, and minimum solution norm, ρ = ‖f‖2. The right balance between
these quantities forms the basic idea for the L-curve method.

3. The singular value decomposition

The singular value decomposition of K is a decomposition of the form [11]

K = U�VT, (9)

where U ∈ Rm×m, � ∈ Rm×n and V ∈ Rn×n. The matrices U and V are orthogonal ma-
trices whereas � is a diagonal matrix whose positive elements, σi , appear in a decreasing
order in the diagonal. The elements σ1, σ2, . . . , σn are unique; however, the matrices U
and V are not.
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Applying the singular value decomposition to Kf = g one obtains [16]

f =
n∑
j=1

uT
j g

σj
vj , (10)

where the index j refers to the column of the matrix. The above solution, using SVD
method has two important features [17]: (a) it minimizes ‖�‖2

2 = ‖Kf−g‖2
2, and (b) the

singular value decomposition solution is the solution with minimum norm. Here also the
problem is not completely solved, since, in the presence of errors in g, a point to stop the
series (10) has to be choosen. This cutoff point, say k, is analogous to the regularization
parameter in the Tikhonov regularization. The way it is going to be found will be also
using the L curve analysis.

4. The model Fredholm integral equation

The numerical comparison between the Tikhonov regularization and the singu-
lar value decomposition will be analyzed using a Fredholm integral equation in the
form [12]

∫ b

a

(
1

x + y
)

1

y
dy = 1

x
ln

(
1+ x/a
1+ x/b

)
(11)

with 1 � x � 5, a = 1 and b = 5. The exact answer for this inverse problem, i.e.,
f (y) = 1/y will be used to test the two above mentioned methods. Other models for the
Fredholm integral of first kind could be used, such as an integral for the representation
of the second virial coefficient [4], but the one above provide a simple example of this
kind of integral. Also it will avoid thermodynamics, geophysics, or other definitions,
being a model easy to handle. The integral (11) has also been used to implement the
Tikhonov regularization [12] but no critical analysis of the regularization parameter was
discussed, being determined by a trial and error procedure.

The integral (11) was represented in a rectangular basis with N being the number
of discretized points. With N = 32 one obtains ‖Kf−g‖2

2 = 1.985 ·10−6 , rank(K) = 10
and cond(K) = 8.92 · 1011, which make clear the ill-posed nature of the problem. Al-
though with N = 32 there is a small error in the representation of the integral, an exact
value of g was generated from the computed values of K and f. The error was then in-
troduced in g by the addition of a noise. In the discussion of the Tikhonov regularization
and singular value decomposition methods, and for N = 32, an average error of 3%
was introduced into the exact solution. A first example, with N = 8, and treating the
discretization error as noise will also be used.

Inversion in the Tikhonov regularization was performed using a Gaussian elimi-
nation [11,16]. The algorithm presented in 1970 by Golub and Reinsch [17], as imple-
mented by Forsythe et al. [16], was the one used in this work for the calculating the
singular value decomposition.



J.P. Braga / Numerical comparison of Tikhonov regularization and singular value decomposition155

5. Results and discussions

A first attempt to find f could be by direct inverting K in the equation Kf = g. The
result forN = 8 and treating the discretization error as a noise, ‖Kf−g‖2 = 1.142·10−2,
is presented in figure 1. It is clear that the computed solution is not acceptable. The small
noise in g and the very high condition of K, cond(K) = 8.9704 · 1011, are sufficient to
amplify the error in the solution. The norm of the exact result in this case is 1.250
whereas the norm of the calculated solution is 126.8. Another approach to this problem,
by truncating the singular value expansion, will be discussed later.

A second attempt to find a f (y) such that
∫ b
a
K(x, y)f (y) dy = g(x) can be tried

by setting a0 = a1 = a2 = 0 and the regularization parameter also equal to zero in
equation (6), which is, in fact, equivalent to the least square method. Again using the
inverse of KTK the solution obtained is not better than before since KTK and K have
the same rank. From these two examples it is clear that one has to give some extra
information to the original problem or, instead, decompose the problem into subspaces.

The extra information to be given in this work will be the one to minimize, not only
the residual norm, but also the norm of the solution itself. No initial guess for f will be
assumed and due to the nature of the solution the conditions a1 = 0 and a2 = 0 will be
further imposed. Under these conditions one has that � = ‖Kf− g‖2 and ρ = ‖f‖2 are
function of the regularization parameter, i.e., � = �(λ) and ρ = ρ(λ). The next step in
the Tikhonov regularization is to find the regularization parameter, λ.

The right balance between � = �(λ) and ρ = ρ(λ) can be done analyzing the
graphics of log(ρ)× log(�), for several values of λ, as given in figure 2. Due to its pe-
culiar form, this parametric curve is called the L-curve. The estimation of the optimal λ,

Figure 1. Calculated value (dashed line) and exact value (solid line) of f (y).
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Figure 2. Regularized solution and norm (in logarithm form) for several regularized parameter.

say λ∗, can be obtained by calculating the point of maximum curvature in the L-curve
which correspond to the maximum of the curve [13],

κ(λ) = ρ ′�′′ − ρ ′′�′
((ρ ′)2 + (�′)2)3/2 , (12)

where the primes represent derivative with respect to λ . This maximum gives the right
balance between the residual and solution norm. Figure 3 shows the graphic of κ(λ)×λ
from which it is obtained the regularization parameter. The maximum curvature occurs
at λ∗ = 1.2590 · 10−2. For this value one has �(λ∗) = 0.17824 and ρ(λ∗) = 2.4262.
Since for this case the exact value for � is 2.5278 one might conclude that the solution
is a good estimate for the problem. But this is not the case since the residual norm is not
a small number.

The solution for λ∗ = 1.2590 · 10−2 is given in figure 4 where one can see why
the residual norm for the solution has a value close to the correct value. Contribution
of the norm to the left and to the right of the intersection point makes the two norm
to be close one to the other. Analogous situation has also happen, for example, when
applying Tikhonov regularization in field soils [3] and thermodynamics [4], being in fact
an expected tendency since the solution found has to be close to the true solution. Under
the L-curve criterion, this is the best one can do to find the solution of the above ill-posed
problem using the Tikhonov regularization.

Applying the singular value decomposition to Kf = g the solution can be computed
as in equation (10). The answer, as in the first example for the Tikhonov regularization,
is also done for N = 8. Again, due to the presence of errors in the discretizing the
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Figure 3. L-curve curvature as a function of the regularization parameter.

Figure 4. Exact value (solid line) and calculated value from Tikhonov regularization (dashed line) of the
function f (y).

integral equation, the answer is not acceptable. In fact, using the complete basis for the
R
n space the answer is exactly the same as the Tikhonov solution, presented in figure 1.

The singular value decomposition provides a clear interpretation of the above
wrong results. One has first to realize the importance of the singular values when com-
puting a solution of an ill posed problem. The singular values forN = 8 are presented in
table 1 from which the origin of the problem to calculate f for an ill-conditioning matrix
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Table 1
Singular values, σi , as a function

of the index i, for N = 8.

i σi

1 0.78400
2 4.3794(−2)
3 1.7098(−3)
4 5.2203(−5)
5 1.1951(−6)
6 1.9121(−8)
7 1.8960(−10)
8 8.7399(−13)

or rank deficient matrix can be explained. The coefficients of the expansion of f in the
basis {vi} are inversely proportional to the singular values. Any small error in g will
be amplified by the small values of σi . Therefore, not all values of the singular values
should be taken into account when errors are included in g.

The division of Rn and Rm into the four fundamental subspaces [11], the range
of KT, R(KT), the null space of K, N(K), the range of K, R(K), and the null space
of KT, N(KT), is very important at this point. Since Rn = R(KT) ⊕ N(K) and Rm =
R(K) ⊕ N(KT), one can consider moving the boundary between the subspaces in Rn

and Rm. For Rn these will define another subspace for the solution f, make part of the
basis {vi}, with the undesired small singular value belonging to the nullspace of K. For
R
m this will represent which part of data can be conveniently treated in the inversion

procedure.
Defining dim(R(KT)) = k, the problem to find the solution using the singular

value decomposition will be complete if the value of k is established. It is important
to say that k is not necessary the rank of the matrix. For noise free systems and rank
deficient problem that will be case, but for system with any error in g, even the small
experimental errors, the optimum value of k has to be calculated.

Finding the optimum value of k in the singular value decomposition method is
analogous to find the optimum λ parameter in the Tikhonov regularization. Here also
one can use the L curve analysis to choose the best value of k. The L curve, for N = 32
and for the same error introduced in the Tikhonov regularization analysis, is presented in
figure 5. Since k is discrete it is easy to see its optimum value, the curvature calculation
not being necessary. It is clear that this optimum value, from the above figure, is equal
to 3. The computed solution, that is,

f3 =
3∑
j=1

uT
j g

σj
vj (13)

is presented in figure 6.
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Figure 5. L-curve for the singular value decomposition method.

Figure 6. Exact value (solid line) and calculated value using singular value decomposition (dashed line) of
the function f (y).

The basis v, the vector column u and the singular values were calculated using the
algorithm described in the previous section. The simplicity in which the solution was
found, and its associated precision, makes the singular value decomposition method a
better method to use when compared to the Tikhonov regularization.
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6. Conclusions

The Tikhonov regularization and the singular value decomposition, two methods
to treat linear ill-posed inverse problems, were presented and compared. The analysis
was carried out on a model system and under the parametric L criterion. The conclusion
is very clear: the singular value decomposition should be used in the place of Tikhonov
regularization for ill-posed problems.

The non-convergence aspect of the L curve is not a new result [18] although no
comparison between these two methods, using this criterion, has appeared. The nature of
the comparison of these two methods can be further explored if one recall that Tikhonov
regularization is in fact a constrained least square problem. The minimum of (2) is
required with the restriction (3). The solution found satisfies these criteria.

On the other hand when using the singular value decomposition one seeks for a
solution such that, f ∈ R(KT). Therefore, if another solution, x, has been found it has
to be of the form x = f + fN, where fN ∈ N(K). Due to the orthogonality of these two
subspaces, ‖x‖2

2 = ‖f‖2
2+‖fN‖2

2 > ‖f‖2
2 which shows the solution obtained is indeed the

solution with minimum norm. No restriction has to be impossed when using the singular
value decomposition. All that has to be done is to fix the dimension of R(K) using the
L curve.

Another important aspect when comparing these two approach is the filter factor,
w, that each method uses. For the singular value decomposition this filter factor is equal
to w1 = 1 if i � j and wi = 0 if i > k. Manipulating equation (6), with a1 = a2 = 0,
one obtains the filter factor for the Tikhonov regularization wi = σ 2

i /(σ
2
i + λ). This

shows another important diference between these two approaches. In the SVD method
there is a sudden change in the filter factor whereas in the Tikhonov regularization the
undesired small singular values are damped slowly. In the Tikhonov regularization all
the singular values are taken into account and this will amplify the errors in the data.
The filter factor in the SVD method is more effective.

For some problems, such as in the inverse of potential energy functions from sec-
ond virial coefficient [4], some information about the solution can be available. In this
case the Tikhonov regularization will give a very reliable solution since, instead of the
norm of the solution one can use the norm of f − f̂ in the L-curve. This explains why
the Tikhonov regularization has become so often used. Nevertheless if no information
is available about the solution, then the singular value decomposition should be used.
Together with that, not only the Tikhonov regularization, but also the singular value de-
composition, can be investigated by other methods to choose the optimum parameter.
One of these methods could be the generalized cross validation [19], but this has to be
investigated further in the comparison of these methods.
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